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Ideal Projectile Motion - I
The Exact Solution in 2-D:

• ax = 0; ay = -g
• vx = constant = v0x
• x = v0xt
• vy = v0y – gt
• y = v0yt - ½gt2

• y = xtanθ0 - gx2/(2v0
2cos2θ)
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Ideal Projectile Motion - II
The Numerical Solution in 2-D

•Using difference equations, we create a spreadsheet in 
which a motion lasting say two seconds is broken into 200 
segments, each one of duration Δt = 0.01 seconds.
• Let n = the index number of the segment beginning with 

segment 1 from times t = 0 to t = Δt.  
• Let x(n), y(n), vx(n) and vy(n) be the values at the end of 

the nth segment. These values will be found on the nth 

line (i.e., row) of the spreadsheet.



Numerical Integration by Excel
• The initial values at the end of segment 1 [during the first Δt] are x(1), 

y(1), vx(1) and vy(1).  For ideal projectile motion from the origin of the 
x-y axes, x(1) = y(1) = 0; and vx0= v0cosθ0, and vy0 = v0sinθ0.

Then: vx(n+1) = vx(n) + ax(n)Δt;                                   (1)                     

And: x(n+1) = x(n) +vx(n)Δt + ½ax(n))(Δt)2.                         (2)

Also: vy(n+1) = vy(n) +ay(n)Δt;                                   (3)

And: y(n+1) = y(n) + vy(n)Δt + ½ay(n)(Δt)2.                     (4)

• Note the “Bootstrap;”  The values in row n+1 are based on the values 
in row n, the previous row of the spreadsheet, which are all known! 
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Exact Solutions vs. Numerical Solutions

• When equations can be integrated exactly, those solutions work for 
all initial conditions.  An exact solution solves a wide range of 
problems with slightly different, or even greatly different, initial 
conditions.  For that reason, exact solutions are extremely powerful.

• On the other hand, numerical solutions solve one problem at a time.  
And for every new set of initial conditions, one must insert the new 
initial conditions into the first line of the spreadsheet to bootstrap the 
new solution uniquely determined by those new initial conditions.

• Numerical solutions are available even when exact solutions are not.   



Exact Shuttlecock Motion in One Dimension - I
Free Fall from Rest (Exact solution)

Fres = -kmv2 (1)

mg – kmv2 = ma                                                             (2)

At terminal velocity, a = 0 and v = VT = constant, and

VT
2 = g/k                                                             (3)

We learned by direct experiment that the terminal speed

VT = 6.80 m/s (15 mph)                                    (4)

The exact solution for v(t) from Eq.(2) is   v(t) = VTtanh(gt/VT)                                           (5)

The exact solution for y(t) from Eq.(5) is   y(t) = (VT
2/g)ln[cosh(gt/V)]                               (6)
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Exact Shuttlecock Motion in One Dimension - II
The Downward Smash

• The 2006 World Record for the highest initial speed of a shuttlecock—after 
being struck with a badminton racket—is 92.1 m/s (206 mph!)

• The initial speeds of well-struck shuttlecocks can approach similar speeds 
during serious badminton competition, which raises questions about how 
such high speeds are dealt with on an official badminton court that is only 20 
feet wide and 44 feet long.

• For a shuttlecock launched, not from rest, but with an initial downward speed 
of v0 = 92.1 m/s, the Eq. 1 type resistive force remains the same but the 
equation of motion differs from Eq. (5) because the initial conditions are so 
different.  According to theory, the exact downward speed is given by:                                               

v(t) = V [(v0 + Vtanh(gt/V))/(V + v0tanh(gt/V))]                  (7)             
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Shuttlecock Motion in Two Dimensions - I

F = ma = m(Δv/Δt)                                            (8)

Fx = m(Δvx/Δt)                                                     (9)

Fy = m(Δvy/Δt)                                                    (10)

We will assume the following resistive force on the shuttlecock:

Fres = -mkv²(v/v)                                                 (11)

“m” is the mass of the shuttlecock, “k” is a proportionality constant, and (v/v) is a 
unit vector which points in the direction of the vector velocity v of the shuttlecock.



Shuttlecock Motion in Two Dimensions - II

• The combination of a minus sign with the unit vector (v/v) in Equation 
(11) means the force of air resistance always remains proportional to 
the square of the speed (v2) but is always opposite in direction to the 
instantaneous velocity vector of the shuttlecock.

• Assume that the shuttlecock is launched from the origin (0,0) with 
initial speed v0 and initial launch angle θ0.  We immediately find that

vx0 = v0cosθo;  and vy0 = v0sinθ0 (12)



Shuttlecock Motion in Two Dimensions - III

From Equations (9), (10) and (11) we find that:

Fx = m(Δvx/Δt) = -mkv2(vx/v),   and

Fy = m(Δvy/Δt) = -mg - mkv2(vy/v).

After cancelling out the mass from both sides, we find:

Δvx = -kvvxΔt (13)

Δvy = -(g + kvvy)Δt (14)                                        

• Recall that in 2-D                      v2 = vx
2 + vy

2 (15) 



Shuttlecock Motion in Two Dimensions - IV

• Due to the presence of v in Equations (13) and (14), they are said to be “coupled 
equations.”  That is, the equation of motion for vx also includes vy; the equation 
of motion for vy also includes vx; and in both cases that is due to the fact that 
from Eq.(15), v has both vx and vy components. 

• Eqs. (13) and (14) cannot be solved exactly because of this coupling.  The solution 
for velocity vx in the x-direction depends on velocity vy in the y- direction; and the 
solution for vy in the y-direction depends on vx in the x direction!     

• This presents a major problem in terms of finding “exact solutions” for Equations 
(13) and (14).  But it presents no problem at all in terms of using numerical 
integration via Excel spreadsheets! 

• Recall how the numerical integration results compared favorably with the exact 
solutions for ideal projectile motion, provided only that the time increment Δt is 
made sufficiently small.



The Bootstrap Method of Numerical Integration

• Spreadsheets allow the numerical integration of Equations (13) and (14) 
despite the coupling.  Here’s why:

• We know the values of vx and vy at t = 0.  They are given in Equation (11).  
That means we also know the value of v at t = 0.  We simply put the values 
from Eq. (11) into Eq. (15) to find v.

• The zeroth row of our Excel spreadsheet will list the various values and 
parameters at time t = 0.

• Some of the column headings will carry titles such as these:
• Δt; t; vx; vy; v; Δvx; Δvy

• The entries in the zeroth row of the spreadsheet for the above 7 headings 
will carry the following values:

• 0.01; 0; vx0; vy0; 0; Δvx0; Δvyo



Bootstrap – Step II
• The entries in the next (first) row of the spreadsheet will carry the following values:

0.01; 0.01; vx1 = vx0 + Δvx0; vy1 = vy0 + Δvy0; v1; Δvx1; Δvy1

• Alongside the above columns, we will add columns with headings for x, y, Δx, and Δy.

Recall that by definition:   vx = Δx/Δt and vy = Δy/Δt

This means that Δx = vxΔt and Δy = vyΔt.

• And since we know the values of x0 and yo to be zero at t = 0, we can then calculate the 
values of x and y at time t = 0 + Δt = Δt:  They are x1 = 0 + Δxo; and y1 = 0 + Δyo.

• For the next row, x2 = x1 +Δx1, and y2 = y1 + Δy1.

• Note: Every new row in the spreadsheed is based on known values in the previous row!

• And Excel makes it easy to generate the later rows by just building on the previous rows!
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“The Effects of Coefficient of Restitution (COR)        
Variations on Long Fly Balls”

• This analysis is based on the David T. Kagan article in The Physics of 
Sports, pp. 65-68.  The following quote is from the abstract: 

• “The coefficient of restitution of baseballs is required to be 0.546 ±
0.032.  These variations affect launch velocity & ultimately the range 
of fly balls.”  

• It is well known that air resistance effects on baseballs are too large to 
ignore.  That is, the trajectories of baseballs are not perfect examples 
of “ideal projectile motion.” 

• To predict the motion of baseballs subject to gravity and air resistance 
(but without spin) requires an analysis similar to the one we did for 
the shuttlecock.  Assume an air resistance force proportional to v2.



Terminal Velocity of the Baseball

• In 1959 scientist Lyman J. Briggs was the first to prove the curve ball 
was real and not an optical illusion, as many people had thought.

• Briggs’ cited the following terminal velocity for the baseball:

vT = 140 f/s = 95.45 mph = 42.67 m/s.

• COR is measured experimentally by using an “air-cannon” to fire 
baseballs at a solid wall of “ash,” the  wood baseball bats have 
historically been made from.

• They measure initial speed vi of the ball before it hits the wall, and 
the final speed vf of the ball after it hits. 

COR = vf/vi



The Meaning of the Term

• A COR of 0.546 means the rebound velocity vf is 54.6 percent of the 
incoming velocity.

• COR is a measure of how efficient the collision was in preserving speed and 
hence kinetic energy.

• By way of comparison, the COR of a tennis ball is 0.728.
• That MLB specifies that the COR for baseballs must fall in a range of 0.546 ±

0.032 introduces some ambiguity into just how “bouncy” any given 
baseball is permitted to be.

• At the low end of the range, the COR for a given ball could be as low as 
0.546 – 0.032 = 0.514;

• At the high end of the range, the COR could be as high as 0.546 + 0.032 = 
0.578.



The Size of COR Variations 

• For the same incoming speed before a collision with the bat, the final 
speed after the collision with the bat could be either 51.4% of the 
incoming speed or 57.8% of the incoming speed.

• That is a percent difference defined by the ratio 57.8/51.4 = 1.125.  

• The final speed of the ball on the high end of the COR scale could be 
12.5% higher than the final speed of the ball on the low end. 

• And if that higher “final speed” were coming off the bat of an MLB 
slugger, the difference in range could be very significant.



A Long Fly Ball to the Wall
• Assume that the same slugger hits the same pitch exactly the same 

way, first with a ball having a COR exactly equal to 0.546, right in the 
middle of the allowed range, and later with a COR on the high end. 

• Using numerical integration with an Excel spreadsheet, I found one 
(of no doubt many) combinations of launch velocity and launch angle 
(v0,θ0) that yielded a fly ball near the 400 foot sign in center field in 
most ballparks.   

• The first combination had launch velocity 153 f/s (104 mph) and a 
launch angle of 45°.  Look at the next chart.  
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Range Variation with COR Variation

• The previous simulation of a long fly ball to the wall in the presence 
of air resistance yielded a horizontal range of 403 feet. 

• The next simulation assumes a launch velocity at the high end of the 
COR range, which involves a final speed increase of 5.86percent 
(0.578/0.546 = 1.0586).

• That leads to a new launch velocity: 153f/s*(1.0586)=162f/s. 

• See the next chart. 
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The Bottom Line
• A 5.86% difference in launch speeds between the middle and top end 

of the COR values yields a 6.95% difference in fly ball range.

• The range for COR 0.546 was 403 feet, a ball the best center fielders 
would probably catch.

• The fly ball range for COR 0.578 was 431 feet, a sure home run in 
most ballparks.

• And we only used half the allowed COR range!



A Brief History of the “Curve Ball”
• This analysis is based on the Lyman J. Briggs article in The 

Physics of Sports, pp. 47-54.  From the Abstract:

• “The effect of spin and speed on the lateral deflection 
(curve) of a baseball has been measured by dropping the 
ball while spinning about a vertical axis through the 
horizontal wind stream of a 6-ft tunnel.”

• “For speeds up to 150 ft/sec and spins up to 1800 rpm, the 
lateral deflection was found to be proportional to the spin 
and to the square of the wind speed.”

• “When applied to a pitched ball in play, the maximum 
expected curvature ranges from 10 to 17 inches, depending 
on the spin.”

• Coincidentally, 17 inches—is the width of home plate!
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Dizzy Dean and the “Curve Ball”
• The history of the “curve ball” goes back to the 19th

century.  As of the 40s and 50s, major publications 
continued to call the curve ball an “optical illusion.”  

• Hall of Fame pitcher Dizzy Dean (1910-1974), who played 
between 1930 and 1947, said the following when 
someone said to him that the curve ball was an optical 
illusion: 

• “Shucks, get behind a tree and I’ll hit you with an optical 
illusion.”

37



The Curve Ball is not an Optical Illusion! 

• By 1959, however, the issue of whether the curve ball was real or not 
was settled once and for all by Lyman J. Briggs, then Director Emeritus 
of the National Bureau of Standards.

• A key result of Briggs’ work (Table I) was this:

• With ω = 1800 rpm (30 rev/sec), and v = 125 ft/sec (85 mph), the 
measured deflection was 25.8 inches—more than two feet! 
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The Bernoulli Force on a Baseball
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The Magnitude of the Spin Force
Fspin = cLmωv2

• cL is a constant, and m is the mass of the baseball. 
• Major league pitchers routinely put spin on the ball 

between 1200 and 1800 rpm, which is equivalent to 20 to 
30 rev/second. A “knuckle ball” is thrown with spin from 
zero to 1 rev/second, at low speeds from 60 to 70 mph!

• The time of flight of a pitched ball between the mound 
and home plate is on the order of 0.5 second.  So in that 
half-second time period, a ball rotating at 1800 rpm 
completes only 15 rotations. 

• Yet the best hitters in major league baseball history have 
claimed they could detect the rate of spin and the axis of 
spin and hence know where the ball would likely end up 
when it crossed the plate!  And this without ever having 
taken a physics course. 
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Motion of a Golf Ball with Backspin
• Based on experience with shuttlecocks and baseballs, one might expect that the 

projectile motion of a golf ball would obey the very same equations. 

• But experiment shows that is not the case!

• For driven golf balls, both the resistive force and the lift force are proportional 
not to v2 but to v! 

• The air resistance force on a golf ball changes—not just in degree but in kind—
depending on the speed of the ball.  This change in character is known as the 
“drag crisis” of the golf ball.

• Below speeds of about 20 m/s (45 mph), the air resistance on a golf ball is 
proportional to v2, the square of the ball’s speed.  But above 20 m/s, the air 
resistance on a golf ball is proportional to the first power of v. 

• In what follows, we will therefore use the linear versions of the resistive forces 
and the lift forces.



Lift-Force Direction relative to Velocity Vector



The Equations of Motion

• We will assume a PGA type launch velocity of 200 ft/sec (136 mph).  We 
will look at a range of launch angles to see which angles deliver the longest 
range for that particular launch velocity.

• We will assume that the spin imparted to the golf ball will be pure back 
spin.  This will preclude any 3-dimensional motions; that is, no hooks, 
slices, draws or fades.

• For the x and y components of Newton’s second law of motion for a golf 
ball with backspin we find:

-mcvx - mkvsinθ = m(Δvx/Δt),                                            (4)                      

-mcvy + mkvcosθ – mg = m(Δvy/Δt).                                            (5) 

• The experimental values of the constants are: c = 0.250s-1 and k = 0.247s-1.



Linear Resistance and Linear Spin-Lift

• By dividing out the mass terms on both sides, we obtain:                                                                     

-cvx – kvy = (Δvx/Δt),                             (6)                                                                                           

-cvy + kvx -g = (Δvy/Δt),                             (7)

v2 = vx
2 + vy

2.                             (8)

• These three equations were inserted into an Excel spreadsheet in 
which the numerical integration was conducted as we have done 
previously with coupled differential equations that cannot be solved 
exactly.  We used a Δt = 0.1 second and the spreadsheets required 
100 to 200 rows to give complete trajectories. 
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Thank You for your kind attention

• My Villanova email address is angelo.armenti@Villanova.edu.

• I welcome your questions and comments and will be happy to share some 
of my spreadsheets with you if you would like to see how they work and 
what they predict.

• All students (Arts Majors) in my MSE 2604 Physics of Sports course are 
required to do a project.  One student (an excellent golfer) was able to 
model every club in his bag by starting with his known club head speed and 
the loft angle of every club.

• Stay well.   Check out “Nasty Pitches – Part 1” below.

• https://www.youtube.com/watch?v=Ps8yWie33Ek.
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