long range magnetic order in spin-orbit coupled double perovskites Ba$_2$YRuO$_6$ and Ba$_2$CaOsO$_6$ probed with neutron scattering and muon spin relaxation

J. P. Carlo1, J. P. Clancy2, C. M. Thompson3, Y. J. Uemura4, J. E. Greedan2 and B.D. Gaulin3

1 Villanova University, Villanova, PA; 2 University of Toronto, Toronto ON; 3McMaster University, Hamilton, ON; 4Columbia University, New York, NY

Abstract

Frustration manifests in the double perovskite lattice A$_2$BB'O$_6$ (Fig. 1), in which the antiferromagnetically correlated B ions reside at tetrahedrally edge-sharing tetrahedra. Perovskites may be synthesized with most elements from the periodic table, enabling systematic studies of frustration as a function of structural distortion, lattice parameter, ionic contrast to theoretical predictions, despite a lack of evidence for 36K; such a gap is unexpected for an elements from the periodic table, enabling systematic studies of susceptibility, heat capacity and λ scaling of the gap with respect to TN and/or the spin-orbit coupling constant λ. The latter (4 systems) exhibits antiferromagnetism and antiferromagnetism, two- and four- systems, but progressively stronger in 4 systems, but progressively stronger in 4 systems. (i) the gapped state below 36K, and (ii) the systems. The precession/relaxation rates in Ba$_2$CaOsO$_6$ can be compared with the known 2.2 μB moment in Ba$_2$YRuO$_6$ to derive an estimated ordered moment of 0.2 μB. This is very difficult to detect in a neutron scattering experiment, but easily accessible to Ba$_2$YRuO$_6$. Chen et al. propose a phase diagram for d systems with sizable SOC, suggesting several candidate AF ordered states for both Ba$_2$YReO$_6$ and Ba$_2$CaOsO$_6$. Ba$_2$CaOsO$_6$ appears to be consistent with this proposal, allowing for the determination of the spin polarized state using μSR. However, the lack of LRO in Ba$_2$YReO$_6$ despite evidence for structural disorder remains mysterious. Double perovskites, which can be made from elements in the periodic table due to the chemical versatility of the perovskite structure, are a valuable platform for systematic studies of frustration physics.

References

Acknowledgments

This research was made possible by NSERC (Canada), Villanova Faculty Development Grant and the Villanova Department of Physics, and the National Science Foundation (NSF) via the DMR and PIRE programs. We thank the TRIUMF CEMS staff for invaluable technical assistance with these experiments. Research at Oak Ridge National Laboratory’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.